

Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033

Scheme and Syllabus Bachelor of Science (Physics)

Submitted by Board of Studies, Bachelor of Science (Physics)

FYUGP-Scheme I-VIII Semester

Bachelor of Science (Honors/Research) (Physics - Major) Four Year (Eight Semester Degree Course) Teaching and Examination Scheme

S N	Course Category	Name of Course	Course Code	Teachi	ing Sch (hrs.)	eme	Total Credit		E	xamin	ation	Schem	e	
	8- /			(Th)	TU	Р			Theo	ory		Р	ractical	
								Exam Hrs	SEE	CIE	Mi	SEE	CIE	Mi
1	DSC	Measurement	BPH1T01	2			2	3	80	20	n. 40			n.
1	DBC	Mechanics, and Properties of Matter	DITTIO	2	-		2	5	00	20	-10			
2	DSC	Measurement, Mechanics, and Properties of Matter	BPH1P01	-	-	2	1	-	-	-	-	25	25	25
3	DSC	Kinetic Theory of Gases and Thermodynamics	BPH1T02	2	-	-	2	3	80	20	40	-	-	-
4	DSC	Kinetic Theory of Gases and Thermodynamics	BPH1P02	-	-	2	1	-	-	-	-	-	50	25
5	GE/OE	Refer GE/OE Basket	BGO1T01	2	-	-	2	3	80	20	40	-	-	-
6	GE/OE	Refer GE/OE Basket	BGO1T02	2	-	-	2	3	80	20	40	-	-	-
7	VSC	Electronic and Electrical Components	BVS1P01	-	-	4	2	-	-	-	-	50	50	50
8	SEC	Refer SEC Basket	BVS1P02	-	-	4	2	-	-	-	-	50	50	50
9	AEC	English Compulsory	BAE1T01	2	-	-	2	3	50	50	40	-	-	-
10	VEC	Environmental Sci.	BVE1T01	2	-	-	2	3	80	20	40	-	-	-
11	IKS	Vedic Mathematics	BIK1T01	2	-	-	2	3	80	20	40	-	-	-
12	CC	Refer CC Basket	BCC1P01	-	-	4	2	-	-	-	-	-	100	50
		Total		14	-	16	22		530	170		150	250	

B.Sc. Sem-I (Physics - Major)

S N	Course Category	Name of Course	Course Code	Teachi	ing Sch (hrs.)	neme	Total Credit		F	xamin	ation	Schem	e	
				(Th)	TÚ	Р			Theo	ory		Р	ractical	
								Exam Hrs.	SEE	CIE	Mi n.	SEE	CIE	Mi n.
1	DSC	Acoustic and Ultrasonics	BPH2T03	2	-	-	2	3	80	20	40	-	-	-
2	DSC	Acoustic and Ultrasonics	BPH2P03	-	-	2	1	-	-	-	-	25	25	25
3	DSC	Oscillations and Blackbody Radiation	BPH2T04	2	-	-	2	3	80	20	40	-	-	-
4	DSC	Oscillations and Blackbody Radiation	BPH2P04	-	-	2	1	-	-	-	-	-	50	25
5	GE/OE	Refer GE/OE Basket	BGO2T03	2	-	-	2	3	80	20	40	-	-	-
6	GE/OE	Refer GE/OE Basket	BGO2T04	2	-	-	2	3	80	20	40	-	-	-
7	VSC	Instrumental Errors in Measurement	BVS2P03	-	-	4	2	-	-	-	-	50	50	50
8	SEC	Refer SEC Basket	BVS2P04	-	-	4	2	-	-	-	-	50	50	50
9	AEC	Second Language	BAE2T02	2	-	-	2	3	50	50	40	-	-	-
10	VEC	Constitution of India	BVE2T02	2	-	-	2	3	80	20	40	-	-	-
11	IKS	Indian Astronomy	BIK2T02	2	-	-	2	3	-	-	-	50	50	50
12	CC	Refer CC Basket	BCC2P02	-	-	4	2	-	-	-	-	-	100	50
		Total	•	14	-	16	22		530	170		150	250	

B.Sc. Sem-II (Physics - Major)

Exit option: Award of UG Certificate in Major with 40-44 credits and an additional 4 credits core NSQF course/ Internship OR Continue with Major and Minor

S N	Course Categor	Name of Course	Course Code	Te S	eaching cheme (hrs.)	g	Total Cred it		E	Examin	ation	Schem	e	
	5			(Th)	TU	Р			Theo	ory		Р	ractical	
				, ,				Exa	SE	CI	Μ	SEE	CIE	Mi
								m Hrs.	Ε	Е	in.			n.
1	DSC	Solid State Physics	BPH3T05	2	-	-	2	3	80	20	40	-	-	-
2	DSC	Solid State Physics	BPH3P05	-	-	2	1	-	-	-	-	25	25	25
3	DSC	Optics	BPH3T06	2	-	-	2	3	80	20	40	-	-	-
4	DSC	Optics	BPH3P06	-	-	2	1	-	-	-	-	-	50	25
5	Minor	Minor 1 (Refer Minor Basket)	BPH1T01	2	-	-	2	3	80	20	40	-	-	-
6	Minor	Minor 1 (Refer Minor Basket)	BPH1P01	-	-	2	1	-	-	-	-	25	25	25
7	Minor	Minor 2	BPH1T02	2	-	-	2	3	80	20	40	-	-	-
8	Minor	Minor 2	BPH1P02	-	-	2	1	-	-	-	-	-	50	25
9	GE/OE	Refer GE/OE Basket	BGO3T05	2	-	-	2	3	80	20	40	-	-	-
10	VSC	Refer VSC Basket	BVS3P05	-	-	4	2	-	-	-	-	50	50	50
11	AEC	Second Language	BAE3T03	2	-	-	2	3	50	50	40	-	-	-
12	FP	Field Project	BFP3P01	-	-	4	2	-	-	-	-	50	50	50
13	CC	Refer CC Basket	BCC3P03	-	-	4	2	-	-	-	-	-	100	50
		Total		12	-	20	22		450	150		200	300	

B.Sc. Sem-III (Physics - Major)

S N	Course Category	Name of Course	Course Code	To S	eaching cheme (hrs.)	g	Total Cred it		E	xamin	ation	Schem	e	
				(Th)	TU	Р			Theo	ory		Р	ractical	
				, í				Exa	SE	CI	Μ	SEE	CIE	Mi
								m	Ε	Е	in.			n.
1	DCC		DDUATOS					Hrs.	0.0	20	40			
1	DSC	Lasers and Optical	BPH410/	2	-	-	2	3	80	20	40	-	-	-
		Fibres												
2	DSC	Lasers and Optical	BPH4P07			2	1	-	-	-	-	25	25	25
		Fibres												
3	DSC	Mathematical Physics	BPH4T08	2	-	-	2	3	80	20	40	-	-	-
4	DSC	Mathematical Physics	BPH4P08			2	1	-	-	-	-	-	50	25
5	Minor	Minor 3	BPH2T03	2	_	_	2	3	80	20	40	-	_	-
5	WIIIOI	WIND 5	DI 112 1 05	2			2	5	00	20				
(M.	(Refer Minor Basket)	DDU2D02			2	1					25	25	25
6	Minor	Minor 3	BPH2P03			2	1	-	-	-	-	25	25	25
		(Refer Minor Basket)												
7	Minor	Minor 4	BPH2T04	2	-		2	3	80	20	40	-	-	-
		(Refer Minor Basket)												
8	Minor	Minor 4	BPH2P04			2	1	-	-	-	-	-	50	25
		(Refer Minor Basket)												
9	GE/OE	Refer GE/OE Basket	BGO4T06	2	-	-	2	3	80	20	40	-	-	-
10	SEC	Refer SEC Basket	BVS4T06	-	-	4	2	-	-	-	-	50	50	50
11	AEC	Compulsory English	BAE4T03	2	-	-	2	3	50	50	40	-	-	-
12	CEP	Community Service	BCM4P01	_	_	4	2		_	_	<u> </u>	50	50	50
12		Community Service				т	~					50	50	50
1.2	00		DCC4D04			4	2						100	50
13		Keler CC Basket	BCC4P04	-	-	4	2	-	-	-	-	-	100	50
		Total		12	-	20	22		450	150		200	300	

B.Sc. Sem-IV (Physics - Major)

Exit option; Award of UG Diploma in Major and Minor with 80-88 credits and an additional 4 credits core NSQF course/ Internship ORContinue with Major and Minor

S N	Course Category	Name of Course	Course Code	Te S	eaching cheme (hrs.)	g	Total Credi t			Examiı	nation S	scheme		
				(Th)	TÚ	Р			The	eory]	Practica	1
								Exam	SE	CIE	Min	SEE	CIE	Min
								Hrs.	Е					•
1	DSC	Electrostatics and Electric Currents	BPH5T09	2	-	-	2	3	80	20	40	-	-	-
2	DSC	Electrostatics and Electric Currents	BPH5P09	-	-	2	1	-	-	-	-	25	25	25
3	DSC	Magnetostatics and Magnetism	BPH5T10	2	-	-	2	3	80	20	40	-	-	-
4	DSC	Magnetostatics and Magnetism	BPH5P10	-	-	2	1	-	-	-	-	-	50	25
5	DSC	Electronic Devices and Circuits	BPH5T11	2	-	-	2	3	80	20	40	-	-	-
6	DSC	Electronic Devices and Circuits	BPH5P11	-	-	2	1	-	-	-	-	25	25	25
7	DSE	Elective 1	BPH5T12	3	-	-	3	3	120	30	60	-	-	-
8	DSE	Elective 1	BPH5P12	-	-	2	1	-	-	-	-	-	50	25
9	Minor	Minor 5 (Refer Minor Basket)	BPH3T05	2	-	-	2	3	80	20	40	-	-	-
10	Minor	(Refer Minor Basket)	BPH3P05	-	-	2	1	-	-	-	-	25	25	25
11	Minor	Minor 6 (Refer Minor Basket)	BPH3T06	2	-	-	2	3	80	20	40	-	-	-
12	Minor	Minor 6 (Refer Minor Basket)	BPH3P06	-	-	2	1	-	-	-	-	-	50	25
13	VSC	Refer VSC Basket	BVS5P07	-	-	4	2	-	-	-	-	50	50	50
14	CEP	Community Service	BCM5P02	-	-	2	1	-	-	-	-	25	25	25
		Total		13	-	18	22	-	520	130		225	225	-

B.Sc. Sem-V (Physics - Major)

S N	Course Categor	Name of Course	Course Code	Durse Teaching Scheme Total Examination Scheme Code (hrs.) Credi										
	y			(Th)	TU	Р	t		Theo	ory			Practica	al
								Exa	SE	CI	Mi	SE	CIE	Min.
								m	Е	Ε	n.	Е		
								Hrs.						
1	DSC	Quantum Mechanics-I	BPH6T13	2	-	-	2	3	80	20	40	-	-	-
2	DSC	Quantum Mechanics-I	BPH6P13	-	-	2	1	-	-	-	-	25	25	25
3	DSC	Classical Mechanics	BPH6T14	2	-	-	2	3	80	20	40	-	-	-
4	DSC	Classical Mechanics	BPH6P14	-	-	2	1	-	-	-	-	-	50	25
5	DSC	Atomic and Molecular Physics	BPH6T15	2	-	-	2	3	80	20	40	-	-	-
6	DSC	Atomic and Molecular Physics	BPH6P15	-	-	2	1	-	-	-	-	25	25	25
7	DSE	Elective 2	BPH6T16	3	-	-	3	3	120	30	60	-	-	-
8	DSE	Elective 2	BPH6P16	-	-	2	1	-	-	-	-	-	50	25
9	Minor	Minor 7 (Refer Minor Basket)	BPH4T07	2	-	-	2	3	80	20	40	-	-	-
10	Minor	Minor 7 (Refer Minor Basket)	BPH4P07	-	-	2	1	-	-	-	-	25	25	25
11	VSC	Refer VSC Basket	BVS6P08	-	-	4	2	-	-	-	-	50	50	50
12	OJT	Internship (Related to DSC)	BOJ6P01	-	-	8	4	-	-	-	-	100	100	100
	•	Total	•	11	-	22	22		440	110		275	275	

B.Sc. Sem-VI (Physics - Major)

Exit option: Award of UG Degree in Major with 120-132 credits OR Continue with Major and Minor

S N	Cour	Name of Course	Course	Teach	ing Sch	neme	Total Credit]	Examii	natior	n Schen	ne	
	Categ		Coue	(Th)	TU	Р	Creun		Theo	orv			Practica	1
	ory			()				Exa	SE	CI	Μ	SEE	CIE	Min
								m	Е	Е	in.			•
1	DSC	Numerical Methods and Complex Analysis	BPH7T17	2	-	-	2	Hrs. 3	80	20	40	-	-	-
2	DSC	Numerical Methods and Complex Analysis	BPH7P17	-	-	2	1	-	-	-	-	25	25	25
3	DSC	Statistical Physics	BPH7T18	2	-	-	2	3	80	20	40	-	-	-
4	DSC	Statistical Physics	BPH7P18	-	-	2	1	-	-	-	-	-	50	25
5	DSC	Electrodynamics	BPH7T19	2	-	-	2	3	80	20	40	-	-	-
6	DSC	Electrodynamics	BPH7P19	-	-	2	1	-	-	-	-	25	25	25
7	DSC	Advanced Mathematical Physics	BPH7T20	2	-	-	2	3	80	20	40	-	-	-
8	DSC	Advanced Mathematical Physics	BPH7P20	-	-	2	1	-	-	-	-	-	50	25
9	DSE	Elective 3	BPH7T21	3	-	-	3	3	120	30	60	-	-	-
10	DSE	Elective 3	BPH7P21	-	-	2	1	-	-	-	-	25	25	25
11	RM	Research Methodology	BPH7T22	2	-	-	2	3	80	20	40	-	-	-
12	12 RM Research Methodology BPH7P2			-	-	4	2	-	-	-	-	50	50	50
		Total		13	-	14	20		520	130		175	175	

B.Sc. Sem-VII (Honors) (Physics - Major)

S N	Course Categor	Name of Course	Course Code	Teachi	ing Sch (hrs.)	eme	Tota l		Ex	amina	tion S	Scheme		
	y		cour	(Th)	TU	Р	Cred		Theo	rv		Р	ractica	ıl
	·			` '			it	Exam	SE	CI	Μ	SEE	CI	Min
								Hrs.	Е	Ε	in.		Е	
1	DSC	Quantum	BPH8T23	2	-	-	2	3	80	20	40	-	-	-
		Mechanics -II												
2	DSC	Quantum	BPH8P23	-	-	2	1	-	-	-	-	25	25	25
		Mechanics -II												
3	DSC	Spectroscopy	BPH8T24	2	-	-	2	3	80	20	40	-	-	-
4	DSC	Spectroscopy	BPH8P24	-	-	2	1	-	-	-	-	-	50	25
5	DSC	Nuclear and	BPH8T25	2	-	-	2	3	80	20	40	-	-	-
		Particle Physics												
6	DSC	Nuclear and	BPH8P25	-	-	2	1	-	-	-	-	25	25	25
		Particle Physics												
7	DSC	Advanced	BPH8T26	2	-	-	2	3	80	20	40	-	-	-
		Electrodynamics												
8	DSC	Advanced	BPH8P26	-	-	2	1	-	-	-	-	-	50	25
		Electrodynamics												
9	DSE	Elective 4	BPH8T27	3	-	-	3	3	120	30	60	-	-	-
10	DSE	Elective 4	BPH8P27	-	-	2	1	-	-	-	-	25	25	25
11	OJT	Apprenticeship	BOJ8P02	-	-	8	4	-	-	-	-	100	100	100
		(Related to DSC)												
	•	Total		11	-	18	20		440	110		225	225	

B.Sc. Sem-VIII (Honors) (Physics - Major)

Four Year UG Honours Degree in Major and Minor with 160-176 credits

S	Cours	Name of Course	Course	Т	'eachin	g	Total		Ε	xamina	ation	Scheme	e	
Ν	e Catag		Code	5	Scheme	e	Cred							
	orv			(Th)	(nrs.) TU	Р	п		Theo	rv		F	Practical	1
	01 9			(11)	10	1		Exam	SE	CI	М	SEE	CIE	Mi
								Hrs.	E	E	in.	~		n.
1	DSC	Numerical Methods and Complex Analysis	BPH7T17R	2	-	-	2	3	80	20	40	-	-	-
2	DSC	Numerical Methods and Complex Analysis	BPH7P17R	-	-	2	1	-	-	-	-	25	25	25
3	DSC	Statistical Physics	BPH7T18R	2	-	-	2	3	80	20	40	-	-	-
4	DSC	Statistical Physics	BPH7P18R	-	-	2	1	-	-	-	-	-	50	25
5	DSC	Electrodynamics	BPH7T19R	2	-	-	2	3	80	20	40	-	-	-
6	DSC	Electrodynamics	BPH7P19R	-	-	2	1	-	-	-	-	25	25	25
7	DSE	Elective 3	BPH7T21R	3	-	-	3	3	120	30	60	-	-	-
8	DSE	Elective 3	BPH7P21R	-	-	2	1	-	-	-	-	-	50	25
9	RM	Research Methodology	BPH7T22R	2	-	-	2	3	80	20	40	-	-	-
10	RM	Research Methodology	BPH7P22R	-	-	4	2	-	-	-	-	50	50	50
11	RP	Research Project/ Dissertation (Core)	BRP7P01	-	-	6	3	-	-	-	-	75	75	75
		Total	·	11	-	18	20		440	110		225	225	

B.Sc. Sem-VII (Research) (Physics - Major)

'R' in the subject code indicates 'Research'.

S	Course	Name of Course	Course	Т	eachin	g	Tota		E	xamina	tion S	cheme		
Ν	Categor		Code	S	cheme	9	l							
	У				(hrs.)	n	Cre		TI					1
				(In)	10	P	an	From		ry	M:	SEE P	ractica	ll Min
								Exam Hrs.	SEL	CIE	WIII	SEL	CIE	IVIIII
1	DSC	Quantum Mechanics -II	BPH8T23R	2	-	-	2	3	80	20	40	-	-	-
2	DSC	Quantum Mechanics -II	BPH8P23R	-	-	2	1	-	-	-	-	25	25	25
3	DSC	Spectroscopy	BPH8T24R	2	-	-	2	3	80	20	40	-	-	-
4	DSC	Spectroscopy	BPH8P24R	-	-	2	1	-	-	-	-	-	50	25
5	DSC	Nuclear and Particle Physics	BPH8T25R	2	-	-	2	3	80	20	40	-	-	-
6	DSC	Nuclear and Particle Physics	BPH8P25R	-	-	2	1	-	-	-	-	25	25	25
7	DSE	Elective 4	BPH8T27R	3	-	-	3	3	120	30	60	-	-	-
8	DSE	Elective 4	BPH8P27R	-	-	2	1	-	-	-	-	-	50	25
9	RP	Research Project / Dissertation (Core)	BRP8P02	-	-	14	7 (4+2 +1)	-	-	-	-	175	175	175
		Total		09	-	22	20		360	90		275	275	

B.Sc. Sem-VIII (Research) (Physics - Major)

'R' in the subject code indicates 'Research'.

Four Year UG Honours with Research Degree in Major and Minor with 160-176 credits

Total Credits:

- 1. Three Year UG Degree Program: 132
- 2. Four Year UG Degree Program: 172

Abbreviations: Generic/Open Electives: OE, Vocational Skills & Skill Enhancement Courses: VSEC, Vocational Skill Courses: VSC, Skill Enhancement Courses: SEC, Ability Enhancement Courses: AEC, Indian Knowledge Systems: IKS, Value Education Courses: VEC, On Job Training (Internship/Apprenticeship): OJT, Field Project: FP, Community Engagement & Service: CEP, Co-curricular Courses: CC, Research Methodology: RM, Research Project: RP

VSC Basket (Physics)

Semester	Course Category	Name of Course	BoS	Course Code
Ι	VSC	Electronic and Electrical Components	Physics	BVS1P01
II	VSC	Instrumental Errors in Measurement	Physics	BVS2P03
III	VSC	Regulated Power Supply	Physics	BVS3P05
V	VSC	Optical Instruments	Physics	BVS5P07
VI	VSC	Installation of Rooftop Solar Systems	Physics	BVS6P08

Basket for <u>ELECTIVE</u> (DSE) Category Courses (Physics)

Semester	Course	Name of Course	Course Code
	Category		
		Digital Electronics and	BPH5T12A
V	Elective 1	Microprocessor	
		Optoelectronics and Devices	BPH5T12B
		Analogue and Communication	BPH6T16A
VI	Election 2	Electronics	
VI	Elective 2	Astrophysics and Special	BPH6T16B
		Theory of Relativity	
		Experimental Techniques in	BPH7T21A
	Election 2	Physics	
VII (Honors)	Elective 3	Sources of Energy and Energy	BPH7T21B
		Storage Devices	
	Elective 4	Biophysics and Biodevices	BPH8T27A
VIII (Honors)	Elective 4	Nanomaterials and Properties	BPH8T27B
		Experimental Techniques in	BPH7T21RA
VII (Desservela)	Elective 2	Physics	
VII (Research)	Elective 5	Sources of Energy and Energy	BPH7T21RB
		Storage Devices	
VIII (Desservels)	Elective 4	Biophysics and Biodevices	BPH8T27RA
v III (Research)	Elective 4	Nanomaterials and Properties	BPH8T27RB

'R' in the subject code indicates 'Research'.

B. Sc. Semester-I Discipline Specific Core Course (DSC-1)-PHYSICS - Paper-I (BPH1T (Measurements, Mechanics, and Properties of Matter)			H1T01)
DSC-1 THEORY	Hours: 2+2=04 Hours /Week	Marks: 80+20=100	Credit: 2+1=03
	Unit-I		
Measurements	Definition of Physics; levels and and SI units, fundamental and de their units. Length, mass, and tin of Seven Fundamental Units industries and society. Least cour measuring instruments (Viz. Mo Screw Gauge, Travelling microso ammeter, etc.). Errors in meas Dimensions of Physical quantitie its applications.	I need of measurement; CGS rived physical quantities, and me measurements. Definition and their applications in nt, accuracy, and precision of eter scale, Vernier Callipers, cope, spectrometer, voltmeter, surement, Significant figure. es, dimensional analysis, and	7 Hrs
	Unit-II		
Newtonian Mechanics	Force and Inertia, Newton's First Newton's Second Law of motio Law of motion. Law of conserva its applications, Collisions. Static and Kinetic friction, laws Dynamics of uniform circula centrifugal forces and their appli	t Law of motion; Momentum, on; Impulse; Newton's Third tion of linear momentum and s of friction, rolling friction. r motion: Centripetal and cations	7 Hrs
Motion	Frame of reference, motion in graph, speed, and velocity. Unifo average speed and instantar accelerated motion, velocity-t relations for uniformly accelerate Relative Velocity, Motion in t Uniform Circular Motion.	a straight line: position-time orm and non-uniform motion, neous velocity, uniformly ime, position-time graphs, ed motion. a plane, Projectile Motion,	8 Hrs
	Unit IV		
Properties of Matter	Elastic behaviour, Stress-strain Young's modulus, bulk modulus, Pressure due to a fluid colu applications. Viscosity, Stoke streamline and turbulent flow, R principle and its applications. Surface energy and surface application of surface tension – rise.	relationship, Hooke's Law, modulus of rigidity. mn; Pascal's law and its s' law, terminal velocity, eynolds number. Bernoulli's tension, angle of contact, drops, bubbles, and capillary	8 Hrs

_

- 1. Mechanics: D.S. Mathur, S. Chand, and Company.
- 2. The Physics of Sound Third Edition Richard E. Berg, David, David G. Stork, Pearson Publication, 2012.
- **3.** Introduction to Classical Mechanics, 2nd ed. Atam P. Arya by Prentice Hall Publishing
- 4. Continuum Mechanics and Elements of Elasticity Structural Mechanics Victor E. Saouma.
- 5. Feynman Lectures on Physics (Volumes 1,2,3) Feynman, Leighton and Sands.
- 6. Theory of elasticity, McGraw-Hill Education (India) Private Limited, 2010
- 7. Handbook of Measurement Error Models, Edited By <u>Grace Y. Yi</u>, <u>Aurore</u> <u>Delaigle</u>, <u>Paul Gustafson</u>, 2021, published by Chapman & Hall

List of Experiments:

- 1. Torsional Oscillations: To determine modulus of rigidity η of a material of wire by torsional pendulum
- 2. Torsional Oscillations: To determine modulus of rigidity η of a material of wire by Maxwell's needle
- 3. Spectrometer: To find least count of a spectrometer.
- 4. Spectrometer: To determine angle of prism.
- 5. To determine 'Y' (Young's Modulus) of a wire material by method of vibrations-Flat spiral Spring
- 6. To find the Young's Modulus of a material by method of bending of beam
- 7. To determine Coefficient of Viscosity (η) of a given liquid by Poiseuille's Method
- 8. Determination of Surface Tension of mercury / Angle of contact of liquids
- 9. To determine equivalent focal length of a lens system by magnification method.
- 10. Spectrometer: To determine refractive index μ of the material of prism
- 11. To determine the moment of inertia of a fly-wheel.
- 12. To find the surface tension by capillary rise method
- 13. To determine the surface tension of a liquid by Jaeger's method.

Course outcomes

After this course the students will be able to

Sr. No.	Course outcome
1.	Develop interest in measurement with conceptual knowledge of physics.
2.	Develop practical skills in accurate measurements with minimal errors.
3.	Understand and practice these skills while performing physics practical.
4.	Understand the use of apparatus and their use without fear.
5.	Correlate their physics theory concepts with practical outcomes.
6.	Understand the concepts of errors and their estimation.

B Sc Semester-I					
Discipline Specific Core Course (DSC-2)-PHYSICS - Paper- II (BPH1T02)			02)		
(Kinetic theory of gases and Thermodynamics)			,		
DSC-2	Hours:	2+2=04	Hours	Marks: 80+20=100	Credit:
THEORY	/Week				2+1=03
		1	Unit-I		
Kinetic Theory of	Assumpti	ons of kinet	ic theory	of gases, Molecular collision,	7 Hrs
Gases	Mean free	e path and	collision of	cross section, Expression for	
	mean free	e path (Clau	isius Expr	ression) Degrees of freedom,	
	Law of e	quipartition	of energy	v, Derivation of Maxwell's law	
	of distribut	tion of veloc	ities and it	s experimental verification.	
	Momentu	m and visc	OSILY OI E	as, Iransport of energy and	
	relationsh	in	Transpor	t of mass and diffusion, their	
	Telationsh	<u>тр,</u> І	J nit-II		
Real Gases and	Van der w	all's real ga	is. Equation	on of state. Critical constants.	7 Hrs
Thermodynamics	Van der w	all's consta	nts, Critic	al coefficient, limitations.	
, , , , , , , , , , , , , , , , , , ,	Thermody	namic va	riables,	Thermal equilibrium and	
	temperature, Zeroth law of thermodynamics,				
	Thermodynamic processes (isothermal, adiabatic, isochoric,				
	isobaric),	Indicator d	iagram, V	Vork done during isothermal	
	and adiab	atic process	ses, Speci	fic heats at constant pressure	
	and volum	ne, First law	v of therm	odynamics,	
	[l	nit III		
Heat Engine and	Thermody	namic pro	cesses (R	eversible and Irreversible),	8 Hrs
Entropy	Heat engi	ne, Carnot's	s ideal hea	at engine, Carnot's cycle and	
	it's effici	ency, Seco	nd law of	f thermodynamics, Carnot's	
	Concent.	fontronu	Changa ir	antrony in reversible avala	
	Drinciple	of increase	of entrony	of the universe in reversible	
	and irreve	ersible proc	ess Secor	d law of thermodynamics in	
	terms of	entrony. Th	ermodvn	amic scales of temperature.	
	Absolute	zero on f	hermody	namic scale. Third law of	
	thermody	namics. T-S	diagram.		
	5)	0		
		I	J nit IV		
Maxwell's	Maxwell'	s thermody	namic rela	tions $[\delta(T, S)/\delta(x, y) = \delta(P,$	8 Hrs
Relations	$V/\delta(x, y)$	()] and it's a	pplication	ns, Clausius-Clapeyron latent	
	heat equ	iation, Joi	ule-Thom	son effect, Porous plug	
	experiment	it, Joule	- I homsor	n coefficient. Inversion	
	temperatu	re, Boyls la	IW.		
	1				1

Reference books -

- 1. Heat, Thermodynamics and Statistical Physics, by- Singhal, Agrawal.
- 2. Heat and Thermodynamics, by- Brijlal, Subramanyam.
- 3. A Text Book of Heat, by- J. B. Rajam.
- 4. Heat, thermodynamics and statistical physics, by- Brijlal, Subramayam and Hemne.
- 5. Heat and thermodynamics, by- C. L. Arora.
- 6. Principles of Thermodynamics by Jean-Philippe Ansermet, Sylvain D. Brechet, Cambridge University Press; 1st edition (2019)
- 7. Introduction to Electrodynamics by David J. Griffiths (Author)Cambridge University Press; 4th edition (2017)

List of Experiments:

- 1. To determine the pressure coefficient of air by constant volume air thermometer.
- 2. To verify the Stefan's law of radiation by using an incandescent lamp.
- 3. Thermal conductivity of a metal rod using Forbes method.
- 4. Thermal conductivity of a bad conductor by Lee's disc method.
- 5. To determine the critical temperature and critical pressure of a gas.
- 6. To determine the coefficient of thermal conductivity of glass in the form of a tube.
- 7. To determine specific heat of a given liquid by method of cooling.
- 8. Mechanical equivalent of heat by Calendar- Barne's constant flow method.
- 9. To determine the mechanical equivalent of heat (J) with the help of Joule's calorimeter.
- 10. To determine temperature coefficient of resistance of platinum using platinum resistance thermometer
- 11. Study of heating efficiency of electrical kettle with varying voltages.
- 12. To determine the ratio of specific heats of a gas (γ) by Clement and Desormes method.
- 13. To study the Boyle's law and to verify it experimentally.
- 14. To study Charle's law and to verify it experimentally.
- 15. To verify the Stefan's law of radiation by using an incandescent lamp.

COURSE OUTCOMES

After this course the students will be able to

Sr. No.	Course outcome
1.	Understand the assumptions of kinetic theory of gases, ideal and real gases.
2.	Understand the nature of calorimetry by specific heat of solids and gases.
3.	Analyses different transport phenomena in gases
4.	Describe basic concepts of Thermodynamics.
5.	Analyses the laws of thermodynamics in different cases and entropy.
6.	Restate definition of system, surrounding, closed and open system, extensive
	and intensive variables and properties.
7.	Design various types of basic heat engines.
8.	Apply Maxwells thermodynamic relations.
9.	Understanding the low temperature physics

	B. Sc. Semester-1			
Vocational Skill Course (VSC - 1) - PHYSICS Course Code (BVS1P01) (Electronic and Electrical Components)				
VSC-1 Practical	04 Hours /Week	Marks: 100	Credit: 02	
Components	Name of Experime	ents		
	(Any 10 experiments t	o be performed)		
Resistors	1. To study the coding o it with its practical va tolerance range and o	f given Carbon Resistan alue measured by a Mult calculate the error involv	ce and compare imeter. Find its /ed.	
Extension Activity: Laws of involved in both the combined	of series and parallel combination ations using tolerance informatior	of resistances and finding t	he possible errors	
Capacitors	2. To study the coding of given Capacitor (Ceramic/ Electrolytic/ Miller etc.) and compare it with its practical value measured by a Multimeter. Find its tolerance range and calculate the error involved.			
Extension Activity: Law errors involved in both th	s of series and parallel combine e combinations using tolerance	nation of Capacitors and information.	finding possible	
Transformers Extension Activity: Find	3. To study the efficiency, turn's ratio, and power calculations of Transformers (Step-up/ Step-down / power etc.) and comparison between theoretical and practical values with errors involved in the measurements. d the induction of Primary and Secondary windings of the transformer. Also			
find the mutual inductanc	e between them			
Semiconductor Diodes	4. To study the characte and LED and compa- knee voltages. Gathe of these components.	ristic properties of a Dio re the respective cut-in, l r information about the	de, Zener Diode breakdown and limiting values	
Extension Activity: Usin wave rectifier or a regula colours.	g a small power supply design ted power supply using a Zen	a working device such as er diode or a working LE	a half wave/ full ED/s of different	
Power Controlling Devices	5. To study the Circuit I current limits. Study etc.) with their gaug capacities.	Breakers (MCBs and RC y of Wires (Aluminium ges and to find their cu	CBs) with their , Copper, Still, urrent carrying	
Extension Activity: Loading effect on fuses and MCBs. Study of current carrying capacities of given wires with temperature measurement.				
Analogue and Digital Meters	6. To study the voltme analogue devices and the digital Multimete	ter, ammeter, galvanom comparison of their loa r and/or Digital Storage	eter and other ding effect with Oscillator.	
Extension Activity: Opdifferences among them.	en a non-working ammeter, v Justify why a digital voltmeter	oltmeter, and a galvano is preferred over these ana	meter. Find the logue devices?	

Induction Motors	7. To study the Principle, Construction and Working of DC and AC Induction Motors and Measurement of their RPM with electrical parameters.		
Extension Activity: Stud motors.	y of a BLDC Motor and comparison of its efficiency with other type of		
Light emitting devices	8. Study of different types of Bulbs (Viz. Incandescent, CFL, Plasma tubes and LEDs). Analysis and comparison of their efficiencies using a Luxmeter.		
Extension Activity: Use Use of filters for calibration	Extension Activity: Use of a Solar Photo Cell for measurement of light intensity of these devices. Use of filters for calibration with wavelength range of these devices.		
Semiconductor Transistors	9. To study the Principle, Construction and Working of different types of Transistors (UJT, BJT, FET, MOSFET etc.)		
Extension Activity: Iden biasing and use as a fully	tification of the lids of the given component (anyone from the list), its operable device.		
Energy Storages Devices	10. Study of Supercapacitors and Rechargeable Batteries. Their Charging and Discharging through a load and finding their energy densities.		
Extension Activity: Use of any one of these device	sophisticated instruments for the measurement of charge-discharge cycle es.		
Active Components	11. To study the Principle, Construction and Working of different types of Transistors (UJT, BJT, FET, MOSFET etc.)		
Extension Activity: Identification of the lids of the given component (anyone from the list), its biasing and use as a fully operable device.			
Introduction to Measuring Devices	12. Study and Use of ExpEyes-17 / SeeLab 3.0 for performing various experiments in Physics		
Extension Activity: Char / SeeLab 3.0 or equivalent	acteristics of most of the electronic components using either ExpEyes-17 t equipment.		

References:

- 1. Electronic Devices and Circuits by Allen Mottershead, Prentice Hall India Learning Private Limited.
- 2. Integrated Electronics Analog Digital Circuits, Jacob Millman and D. Halkias, McGraw Hill.
- 3. Electronic Devices and Circuit Theory, by Boylestad / Nashelsky; Pearson Education India; 11th edition (1 January 2015)
- 4. Basic Electronics by B. L. Theraja, S. Chand & Company Limited, New Delhi
- 5. Electrical Circuit Theory M Scheme Sem Iii Electrical & Electronics Polytechnique By A Balakrishnan (Author), T Vasantha (Author); NV Publications Pollachi

Course outcomes

After the completion of this course students will be able to

Sr. No.	Course Outcome
7.	Get acquainted hands-on practice for electronic components and their uses in
	electronic circuits
8.	Get acquainted hands-on practice for electrical components and their uses in
	electrical circuits
9.	Apply the practical knowledge in conducting various practical during
	graduation.
10.	Apply the practical knowledge in repairing household electronic and electrical
	gadgets.

B.Sc. SEMESTER – I

BVE1T01: ENVIRONMENTAL SCIENCE

COURSE OUTCOMES:

At the end of the course, students shall be able to:

- Explain the basics of Environmental Science and Atmospheric Science along-with the components of Environment
- Explicate the importance of Environmental Education.
- Elucidate the fundamentals of atmospheric science including formation, depletion and effects of ozone layer and acid rain on environment.
- Describe the various physical and chemical characteristics and properties of Water and Soil
- Understand the Ecology and its allied branches
- Comprehend about Population and Community Ecology
- Study the changes in Population by understanding the concept of Population ecology

Unit-I: Basics of Environmental Science (7.5 Hrs)

- A. Introduction of Environmental Science: Definition, Types, Classification, Characteristics, Components and principles of environment. Scope and need for environmental science, Multidisciplinary nature of environmental science, Environmental ethics.
- B. Environmental Education: Goals, Objectives and principles of environmental education, formal and non-formal environmental education, environmental programme, importance of environmental education, environmental awareness.
- C. Components of Environment: Atmosphere (Structure and composition), hydrosphere distribution of water, hydrological cycle, global water balance, lithosphere Internal structure of Earth, types of rocks, Biosphere- Boundaries of biosphere.

Unit-II: Basics of Atmospheric Science (7.5 Hrs)

- A. Atmospheric Chemistry: Structure of atmosphere based on temperature, photochemical reaction in the atmosphere, temperature inversion and lapse rate, smog formation, types of smog (sulphur and photochemical smog), adverse effect of smog on human being, aerosol.
- B. Green House Effect: Greenhouse gases, relative contribution and effects of greenhouse effect, control of greenhouse gases. Ozone depletion: chemistry of ozone depletion, Dobson Unit, ozone depleting substances (ODS), ozone hole, consequences of ozone depletion, mitigation measures and international protocols.
- C. Acid Rain: Chemistry of Acid Rain, effect of acid rain on ecosystem, control measures. Precipitation – Forms of precipitation (rain, drizzle, snow, sleet, and hail), types of precipitation (conventional, orographic, and cyclonic).

Unit-III: Basics of Ecology (7.5 Hrs)

- A. Ecology: Definition, subdivision and modern branches of ecology, ecology spectrum, scope of ecology. Application and significance of ecology to human beings.
- B. Abiotic Factors: Temperature: effect of temperature on plants and animals, Adaptation to meet extreme temperature. Light: Zonation in marine habitat, effects of light on plants and animals, Microclimate and fire, Shelford law of tolerance, Leibigs law of minimum.
- C. Biotic Factor: Inter specific relationship Positive: Mutualism (symbiosis), commensalism, proto- cooperation Negative: Parasitism, predation, competition, Antibiosis, Neutralism.

Unit-IV: Ecosystems and food chain (7.5 Hrs)

- A. Ecosystem: Definition, structure and function of ecosystem, types of ecosystem: Terrestrial (forest, grassland, desert, cropland), Aquatic (Marine and freshwater)
- B. Food chain: Definition & types: Grazing food chain, detritus food chain, and parasitic food chain, food web in forest and grassland ecosystem. Ecological pyramids (number biomass and energy), energy flow in ecosystem (Y-shaped). Energy flow and the law of thermodynamics.
- C. Biogeochemical Cycles: Definition, classification, gaseous cycle (oxygen, carbon and nitrogen) Sedimentary cycle (phosphorus and sulphur).

Reference Books:

- 1. Text Book of Environment: K M Agrawal, P.K. Sikdar, and S.C. Deb, Mc'Millan Publication, Mumbai.
- 2. Man and Environment: M.C. Dash and P.C. Mishra, Mc'Millan Publication, Mumbai.
- 3. Environmental Science: S.C. Santra, New Central Book Pvt.Ltd, Kolkatta.
- 4. Environmental Problems and Solution: D.K. Asthana, S.Chand Publication, New Delhi.
- 5. Environmental Chemistry: S.S. Dara, S.Chand Publication ,New Delhi.
- 6. Environmental Chemistry: A.K. Dey, New Age International Publishers, 2001.
- 7. A Textbook of Environmental Studies: Dr S.Satyanarayan, Dr S.Zade, Dr S Sitre and Dr

P.U. Meshram, Allied Publishers, New Delhi.

- 8. Environmental Biology: Biswarup Mukherjee, Tata McGraw-Hill Publishing Company Ltd, New Delhi, 1996.
- 9. Animal Ecology and Distribution of Animals: Veer Bala Rastogi, Rastogi Publication, Meerut (U.P).
- 10. Ecology and Environment: P.D.Sharma, Rastogi Publication , Meerut (U.P).
- 11. Fundamentals of Environmental Biology: S. Arora, Kalyani Publishers.
- 12. Environmental Biology: P.K.G. Nair, Himalaya Publication.
- 13. Environmental Biology: K.C. Agrawal, Agro Botanical Publisher ,Bikaner,1994

Indian Knowledge System (IKS)

SEM1: VEDIC MATHEMATICS (BIK1T01)

<u>**Course Outcomes**</u>: This course will enable the students to

- 1. Improve speed and accuracy in numerical calculations
- 2. Acquire IQ skills and high-end technical knowledge
- 3. gain test taking skills & creativity of calculations

UNITS	TOPICS	HOURS
Unit 1	(i)Addition - Subtraction - Combined operations - Beejank (ii)	8
	Multiplication methods: Urdhwatiryagbhayam, Nikhilam,	
	Ekanyunen, Ekadhiken, Antyayordashakepi. (iii) Vinculum -	
	Operations. (iv) Awareness of 1 to 5 Vedic sutras as per	
	Shankaracharya Bharthikrishan Teerthji Swamiji's book.	
Unit 2	(i) Division methods : Nikhilam, Paravartya Yojayet,	8
	Dhwajank(ii) GCD and LCM (iii) Expression of GCD in terms	
	of two numbers.	
Unit 3	(i) Divisibility tests, Osculation & Reverse osculation. (ii)	7
	Division Algorithm, Quotient & Remainder. (iii) Duplex	
	method.	
Unit 4	i) Squares & Square-roots for 6 digit number. (ii) Cubes &	7
	Cube-roots for 6 digit number, Contribution of Indian	
	Mathematicians in Arithmetic.	
	TOTAL	30 HRS

Reference Books:

- 1. Tirthaji B.K. (1965) Vedic Mathematics, MotilalBanarsidass
- 2. Bidder G.P. (1856) On Mental Calculation. Minutes of Proceedings, Institution of Civil Engineers (1855-56), 15, 251-280
- 3. Scripture E.W. (1891) American Journal of Psychology. Vol. IV 1-59
- 4. Mitchell F.D. (1907) American Journal of Psychology. Vol. XVIII 61-143
- 5. Aitken A.C. (1954) The Art of Mental Calculation: With Demonstrations. Transactions of the Society of Engineers. 45, 295-309
- Dow A. (1991) A Unified Approach to Developing Intuition in Mathematics, Scientific Research on the Transcendental Meditation and TM-Sidhi Program Vol 5,3386-3398
- 7. Williams K.R. (1984) Discover Vedic Mathematics. Vedic Mathematics Research Group
- 8. Nicholas, Williams, Pickles (1984) Vertically and Crosswise. Inspiration Books

B. Sc. Semester-II Dissipling Specific Cone Course (DSC) (DUVSICS - Depart III (DDU2702)			
(Acoustic and Ultrasonics)			
DSC - 3 THEORY	Hours: 2+2=04 Hours /Week Marks: 80+20 = 100		
	Unit-I		
Musical Sound and Noise	Musical Sound, characteristics of musical sound (Loudness, Quality, and Pitch) sound intensity level, bel and decibel, Consonance and Dissonance, Harmony and melody, Musical interval, Musical Scales (diatonic scale), temperament, Musical instruments (sitar, flute, harmonium), Weber-Fechner law, Limits of human audibility, Noise, Noise thermometer, Noise standards, Noise Hazards, and control.		7 Hrs
	Unit-II		
Acoustics	Absorption coefficient, Reverberation and reverberation period, Live and Dead room, Sabine's formula, Factors affecting the acoustics of the building, Sound absorbers, Requirements for good acoustics. Transducers and their characteristics, Active and Passive Transducers, Microphone (Moving coil electrodynamic microphone, Crystal microphone, Condenser microphone), Loudspeaker (Moving coil loudspeaker), Hearing aids, Earphone, headphone, Recording and reproduction of sound.		7 Hrs
	Unit III		0.11
Ultrasonic Waves	Introduction, Properties of Ultrasoni acoustic impedance, intensity & press waves, production of USW, Mechanic electrostatic method, piezoelectric ef Magnetostriction oscillators, measu velocity of ultrasonic waves (Acoust technique	c waves (velocity, specific sure), detection of ultrasonic cal method (Galton whistle), fect, piezoelectric generator, rement of Frequency and tical Grating), Sing around	8 Hrs
Unit IV			
Application of Ultrasonic Waves	Measurement of depth of sea, SON testing, Pulse Echo testing, Solder welding, cleaning, flowmeters, ultrasonography, Types of scan, (Qualitative), Ultrasonic Microscopy,	AR system, Non-destructive ing Cavitation), Ultrasonic Medical applications: applications of B scan Blind stick	8 Hrs

Reference Books:

- 1. Modern Acoustics by A.B. Gupta Books and Allied (P) Ltd. 2016
- 2. Oscillation, Waves and Sound by- Sharma and Saxena.
- 3. Waves and Oscillation by- N. Subrahmaniam and Brijlal, Vikas Publishing House Pvt. Ltd., Second Revised Edition, 2010
- 4. Science and Technology of Ultrasonics, Bldev Raj, V, Rajendran, P, Palanichamy, Narosa Pub. House, 2004
- 5. A Text Book of Oscillations, Waves and Acoustic by Dr. M. Ghosh, Dr. D. Bhattacharya, S. Chand Publication
- 6. 7. The Physics of Waves and Oscillation by- N. K. Bajaj, Tata McGraw-Hill, publishing co. ltd. 1984
- 7. Textbook of Sound by V.R. Khanna and R.S.Bedi, 1st edition, Kedharnaath Publish &. Co, Meerut (1998)
- 8. Oscillations and Waves by Satya Prakash Pragathi Prakashan, Meerut, Second Edition,2003

- 9. Mechanics: D.S. Mathur, S. Chand, and Company.
- 10. The Physics of Sound Third Edition Richard E. Berg, David, David G. Stork, Pearson Publication, 2012

Physics Practical / Laboratory

List of the experiments-

- 1. To determine the frequency of unknown tuning fork by Helmholtz resonator
- 2. To determine the velocity of sound by resonance method.
- 3. To determine unknown frequency and to verify the law of inverse variation of frequency and volume of air by Helmholtz resonator.
- 4. To determine the velocity of sound wave in air (gas) with Kundt's tube.
- 5. To determine the velocity of ultrasonic wave using ultrasonic interferometer.
- 6. To study the characteristics of micro phone.
- 7. Study of loudspeaker (woofer, squawker, tweeter) as a transducer.
- 8. Study of Piezoelectric transducer.
- 9. To study the Noise level in the different places with the help of sound level meter.
- 10. To study the characteristics of an NTC/PTC thermistor as transducer.
- 11. To study the thermocouple as transducer.
- 12. To determine velocity of ultrasonic waves using by acoustical grating method.

COURSE OUTCOMES

After completing this course students will be able to

Sr. No.	Course outcome
1.	Understand the different aspects and attributes of a musical sounds. Also
	response of ear to sound and audible limits of human ear
2.	Learn about various musical scales and musical instruments
3.	Learn about acoustics of a hall and requirement of a good acoustic of a hall
4.	Learn about different microphones their design and action and also about
	loudspeaker.
5.	Learn about the characteristics and production method as well as detection of
	USW.
6.	Learn about different applications of USW like SONAR, soldering, cleaning
	and medical applications like sonography etc.

B. Sc. Semester-II Discipline Specific Core Course (DSC-4)-PHYSICS - Paper-IV (BPH2T04) (Oscillations and Black body radiation)				
DSC - 4 THEORY	Hours: 2+2=04 Hours /Week	Marks: 80 + 20 = 100	Credit: 2+1=03	
	Unit-I			
Free Oscillation	Introduction to linear and angular S.F of S.H.M. and its solution, Mass attach pendulum, Composition of two perpen and 1:2 (analytical method), Lissajo Lissajous figures.	I.M., , Differential equation ned to spiral spring, Torsional dicular linear S.H.M.s for 1:1 us's figure. Applications of	7 Hrs	
	Unit-II			
Damped and Forced Oscillation	Differential equation of damped h solution, logarithmic decrement, En oscillations, Power dissipation and qua Forced oscillation, Differential equation solution, Resonance, Sharpness of re Power dissipation, Quality factor and	armonic oscillator and its nergy equation of damped ality factor. In of forced oscillation and its sonance, Power Absorption, bandwidth,	7 Hrs	
Unit III				
Waves in Media	Introductions, transverse and longitud of progressive wave, Speed of transver differential equation of a wave motion a transverse wave in a string, harm velocity and group velocity and their r	inal waves, General equation se wave on a stretched string, in a fluid, Wave equation for onics and overtones, phase elation. Doppler effect.	8 Hrs	
	Unit IV			
Black Body Radiation	Properties of Thermal Radiation, B distribution, Weins Displacement la Sahas Ionization Formula, Rayleig catastrophe concept of energy densit Derivation of Planck's law, deduction Rayleigh-Jeans law, Stefan-Boltz displacement law from Planck's law.	lackbody radiation, spectral w, Wiens distribution Law, h Jeans Law, Ultra-Violet y and pressure of radiation. of Wien's distribution law, mann law and Wien's	8 Hrs	

Reference Books:

- 1. Mechanics: D.S. Mathur, S. Chand, and Company.
- 2. The Physics of Waves and Oscillation by- N. K. Bajaj, Tata McGraw-Hill, publishing co. ltd. 1984
- 3. Modern Acoustics by A.B. Gupta Books and Allied (P) Ltd. 2016
- 4. Oscillation, Waves and Sound by- Sharma and Saxena.
- 5. Waves and Oscillation by- N. Subrahmaniam and Brijlal, Vikas Publishing House Pvt. Ltd., Second Revised Edition, 2010
- 6. A Text Book of Oscillations, Waves and Acoustic by Dr. M. Ghosh, Dr. D. Bhattacharya, S. Chand Publication
- 7. Textbook of Sound by V.R. Khanna and R.S.Bedi, 1st edition, Kedharnaath Publish &. Co, Meerut (1998)
- 8. Oscillations and Waves by Satya Prakash Pragathi Prakashan, Meerut, Second Edition, 2003

List of Experiments

- 1. Study the speed of waves on stretched string.
- 2. Determination of velocity of sound using volume resonator.

- 3. To Stefan's constant by incandescent bulb
- 4. To study the Lissajous's figure using CRO.
- 5. To determine the frequency of tuning fork using sonometer.
- 6. To study the logarithmic decrement, coefficient of damping, relaxation time and quality factor of a damped simple pendulum.
- 7. To study the logarithmic decrement using compound pendulum.
- 8. To find Planck's constant using photocell.
- 9. To study the oscillation of bifilar suspension
- 10. To study the oscillations of oscillations of compound pendulum
- 11. To study the oscillations of rubber band and draw its potential energy curve.
- 12. To study the oscillations of spring and find spring constant and verify laws of spring.

COURSE OUTCOMES

After completing this course students will be able to

Sr. No.	Course outcome
1.	Understand the simple harmonic motion, and properties of different oscillatory
	motion of an object
2.	Understand the damped and forced oscillation
3.	Understand mechanical waves in a medium and wave equation of the transverse
	waves on string and longitudinal waves in a fluid.
4.	Understand black body radiation and development of quantised nature of
	blackbody radiation.
5.	Understand the temperature of heavenly bodies

	B. Sc. Semester	-II			
Vocational Skill Course (VSC) - PHYSICS Course Code (BVS2P03)					
VSC 3 Prostical	Instrumental Errors in N	Morks: 100	Cradit: 02		
v SC-5 Fractical	04 HOURS / WEEK	WIATKS: IUU	Creuit: 02		
Instruments	Name of Experime	ents			
	(Any 10 experiments to be performed)				
Vernier Calliper	1. To study the probable and percentage error of the measuring				
Extension Activity: Find 1	Extension Activity: Find least count of the vernier calliner, Find significant figures, probable error				
and percentage error after taking observations and calculations.					
Screw Gauge	2. To study the probable a instrument screw gauge	and percentage error of e.	the measuring		
Extension Activity: Find	l least count of the screw gauge	e. Find significant figures	, probable error		
and percentage error after taking observations and calculations.					
Travelling Microscope	3. To study the probable a instrument travelling m	and percentage error of icroscope.	the measuring		
Extension Activity: Find	least count of the travelling mice	roscope. Find significant f	igures, probable		
error and percentage error	r after taking observations and c	alculations.			
Sextant	4. To study the probable a instrument sextant.	and percentage error of	the measuring		
Extension Activity: Find	l least count of the screw gaug	e attached with sextant i	nstrument. Find		
significant figures, probab	ble error and percentage error af	ter taking observations an	d calculations.		
Spectrometer	5. To study the probable a instrument Spectromet	and percentage error of er.	the measuring		
Extension Activity: Find	l least count of the Spectrome	ter and identify its diffe	rent parts. Find		
significant figures, probal	ble error and percentage error af	ter taking observations an	d calculations.		
Compound Pendulum	6. To study the probable and percentage error of the gravity related apparatus compound pendulum				
Extension Activity: Find	d significant figures, probable	error and percentage er	ror after taking		
observations and calculations. Drawing of graph.					
Meter Bridge	7. To study the probable electrical equipment me	and percentage error of eter bridge.	the measuring		
Extension Activity: Making electrical circuit connection, find significant figures. probable error					
and percentage error after taking observations and calculations.					
Light emitting devices	8. To study the probable a	and percentage error of t	the measuring		
	electrical equipment po	tentiometer.	8		
Extension Activity: Making electrical circuit connection, find significant figures, probable error and percentage error after taking observations and calculations.					

Rheostat, Milliammeter, Voltmeter, and	9. To study the probable and percentage error of the measuring electrical equipment Rheostat, Milliammeter, Voltmeter, and Galvanometer			
Galvanometer				
Extension Activity: Making electrical circuit connection, find significant figures, probable error				
and percentage error after taking observations and calculations.				
Analogue and Digital	10. To study the probable and percentage error of the measuring			
Multimeter	electrical equipment analogue and digital multimeter			
Extension Activity: Making electrical circuit connection, find significant figures, probable error				
and percentage error after taking observations and calculations.				
Magnetometer	11. To study the probable and percentage error of the magnetic equipment like magnetometer in the determination of horizontal component of earth's magnetic field.			
Extension Activity: Making electrical circuit connection, find significant figures, probable error				
and percentage error after taking observations and calculations.				
Copper Calorimeter	12. To study the probable and percentage error of the copper calorimeter for measuring heat of physical changes and heat capacity.			
Extension Activity: Making electrical circuit connection, find significant figures, probable error and percentage error after taking observations and calculations.				

References:

- 1. An Advanced course in practical physics by C. Chattopadhyay and P. C. Rakshit.
- 2. Practical Physics by S. L. Gupta and V. Kumar
- 3. B. Sc. Practical Physics by C. L. Arora
- 4. Measurement uncertainties: Physical parameters and calibration of instruments by S. V. Gupta
- 5. B. Sc. Practical Physics by Harnam Singh and P.S. Hemne

Course outcomes

After the completion of this course students will be able to

Sr. No.	Course Outcome
1.	Understand the function of different instruments.
2.	Choose and apply proper instrument for the measurement.
3.	Handle the instrument carefully and apply the practical knowledge in his
	further study.
4.	Find the different man made and instrumental errors in doing different
	practical.

SEM 2 : CONSTITUION OF INDIA (BVE2T02)

Syllabus

UNIT – I:

• Historical Background to the Framing of the Indian Constitution: General Idea about the Constituent Assembly of India.

UNIT – II

- Preamble Nature and key concepts/Constitutional values, Socialism, Secularism, Democracy, Justice, Liberty, Equality and Fraternity
- Salient Features of the Constitution of India

UNIT – III

• General study about the kinds, nature and importance of; Fundamental Rights, Directive Principles of State Policy and Fundamental Duties.

UNIT –IV

Introduction of the Constitutional Institutions and Authorities;

- Central Legislature and Executive (Parliament of India, President of India and Council of Ministers)
- State Legislature and Executive (State legislative Assemblies, Governors and Council of Ministers)
- Higher Judiciary (Supreme Court of India and High Courts)

Indian Knowledge System (IKS)

SEM2: INDIAN ASTRONOMY (BIK2T02)

<u>Course Outcomes</u>: This course will enable the students to understand that

- **<u>1.</u>** It is possible to create a map of the intellectual growth of a culture usingastronomy as a probe.
- <u>2.</u> The growth of Indian astronomy occurs in distinct stages analogous to phasetransitions of the evolution of cultures
- <u>3.</u> Indian Astronomy therefore provides an excellent window to the pastdramatic transitions.

UNITS	TOPICS	HOURS
Unit 1	Astronomy in Prehistoric Era, Astronomy in Vedic Era, Vedang	8
	Jyotish, Astronomical References In Religious Scriptures,	
	Astronomies of the West	
Unit 2	Arya Bhatta, Panch Siddhantika of Varahamihira, Surya Siddhanta Varahamihira to Bhaskar Acharya-II, Siddhant Shiromani of Bhaskar Acharya-II, Bhaskar Acharya-II to Jai Singh, Jai Singh and his Observatories.	8
Unit 3	After Jai Singh, Interaction with the Astronomies of the World, Modern Era Astronomy , Our Universe, Cosmology	7
Unit 4	Panchang Horoscope and Astrology , Siddhantas, Karnas and Koshtakas, Observational Instruments of Indian Astronomy	7
	TOTAL	30 HRS

Reference Books:

- 1. The Story Of Astronomy In India, Chander Mohan, Pothi.com
- 2. Indian Astronomy: An Introduction. Front Cover · S. Balachandra Rao. Universities Press, 2000
- 3. Astronomy in India: A Historical Perspective, Thanu Padmanabhan, Springer Science & Business Media
- 4. Hindu Astronomy, W. Brennand, Alpha Editions
- Origin and Growth of Astronomy in India, https://www.tifr.res.in/~archaeo/FOP/FOP%20pdf%20of%20ppt/Vahia %20Origin% 20of%20Astronomy.pdf